1,680 research outputs found

    Include medical ethics in the Research Excellence Framework

    Get PDF
    The Research Excellence Framework of the Higher Education Funding Council for England is taking place in 2013, its three key elements being outputs (65% of the profile), impact (20%), and “quality of the research environment” (15%). Impact will be assessed using case studies that “may include any social, economic or cultural impact or benefit beyond academia that has taken place during the assessment period.”1 Medical ethics in the UK still does not have its own cognate assessment panel—for example, bioethics or applied ethics—unlike in, for example, Australia. Several researchers in medical ethics have reported to the Institute of Medical Ethics that during the internal preliminary stage of the Research Excellence Framework several medical schools have decided to include only research that entails empirical data gathering. Thus, conceptual papers and ethical analysis will be excluded. The arbitrary exclusion of reasoned discussion of medical ethics issues as a proper subject for medical research unless it is based on empirical data gathering is conceptually mistaken. “Empirical ethics” is, of course, a legitimate component of medical ethics research, but to act as though it is the only legitimate component suggests, at best, a partial understanding of the nature of ethics in general and medical ethics in particular. It also mistakenly places medicine firmly on only one side of the science/humanities “two cultures” divide instead of in its rightful place bridging the divide. Given the emphasis by the General Medical Council on medical ethics in properly preparing “tomorrow’s doctors,” we urge medical schools to find a way of using the upcoming Research Excellence Framework to highlight the expertise residing in their ethicist colleagues. We are confident that appropriate assessment will reveal work of high quality that can be shown to have social and cultural impact and benefit beyond academia, as required by the framework

    A photometric study of the hot exoplanet WASP-19b

    Full text link
    Context: When the planet transits its host star, it is possible to measure the planetary radius and (with radial velocity data) the planet mass. For the study of planetary atmospheres, it is essential to obtain transit and occultation measurements at multiple wavelengths. Aims: We aim to characterize the transiting hot Jupiter WASP-19b by deriving accurate and precise planetary parameters from a dedicated observing campaign of transits and occultations. Methods: We have obtained a total of 14 transit lightcurves in the r'-Gunn, IC, z'-Gunn and I+z' filters and 10 occultation lightcurves in z'-Gunn using EulerCam on the Euler-Swiss telescope and TRAPPIST. We have also obtained one lightcurve through the narrow-band NB1190 filter of HAWK-I on the VLT measuring an occultation at 1.19 micron. We have performed a global MCMC analysis of all new data together with some archive data in order to refine the planetary parameters and measure the occultation depths in z'-band and at 1.19 micron. Results: We measure a planetary radius of R_p = 1.376 (+/-0.046) R_j, a planetary mass of M_p = 1.165 (+/-0.068) M_j, and find a very low eccentricity of e = 0.0077 (+/-0.0068), compatible with a circular orbit. We have detected the z'-band occultation at 3 sigma significance and measure it to be dF_z'= 352 (+/-116) ppm, more than a factor of 2 smaller than previously published. The occultation at 1.19 micron is only marginally constrained at dF_1190 = 1711 (+/-745) ppm. Conclusions: We have shown that the detection of occultations in the visible is within reach even for 1m class telescopes if a considerable number of individual events are observed. Our results suggest an oxygen-dominated atmosphere of WASP-19b, making the planet an interesting test case for oxygen-rich planets without temperature inversion.Comment: Published in Astronomy & Astrophysics. 11 pages, 11 figures, 4 table

    Limits to the planet candidate GJ 436c

    Full text link
    We report on H-band, ground-based observations of a transit of the hot Neptune GJ 436b. Once combined to achieve sampling equivalent to archived observations taken with Spitzer, our measurements reach comparable precision levels. We analyze both sets of observations in a consistent way, and measure the rate of orbital inclination change to be of 0.02+/-0.04 degrees in the time span between the two observations (253.8 d, corresponding to 0.03+/-0.05 degrees/yr if extrapolated). This rate allows us to put limits on the relative inclination between the two planets by performing simulations of planetary systems, including a second planet, GJ 436c, whose presence has been recently suggested (Ribas et al. 2008). The allowed inclinations for a 5 M_E super-Earth GJ 436c in a 5.2 d orbit are within ~7 degrees of the one of GJ 436b; for larger differences the observed inclination change can be reproduced only during short sections (<50%) of the orbital evolution of the system. The measured times of three transit centers of the system do not show any departure from linear ephemeris, a result that is only reproduced in <1% of the simulated orbits. Put together, these results argue against the proposed planet candidate GJ 436c.Comment: Replaced with accepted version. Minor language corrections. 4 pages, 4 figures, to appear in A&A Letter

    Pushing the precision limit of ground-based eclipse photometry

    Full text link
    Until recently, it was considered by many that ground-based photometry could not reach the high cadence sub-mmag regime because of the presence of the atmosphere. Indeed, high frequency atmospheric noises (mainly scintillation) limit the precision that high SNR photometry can reach within small time bins. If one is ready to damage the sampling of his photometric time-series, binning the data (or using longer exposures) allows to get better errors, but the obtained precision will be finally limited by low frequency noises. To observe several times the same planetary eclipse and to fold the photometry with the orbital period is thus generally considered as the only option to get very well sampled and precise eclipse light curve from the ground. Nevertheless, we show here that reaching the sub-mmag sub-min regime for one eclipse is possible with a ground-based instrument. This has important implications for transiting planets characterization, secondary eclipses measurement and small planets detection from the ground.Comment: Transiting Planets Proceeding IAU Symposium No.253, 2008. 7 pages, 4 figure

    WASP-50b: a hot Jupiter transiting a moderately active solar-type star

    Get PDF
    We report the discovery by the WASP transit survey of a giant planet in a close orbit (0.0295+-0.0009 AU) around a moderately bright (V=11.6, K=10) G9 dwarf (0.89+-0.08 M_sun, 0.84+-0.03 R_sun) in the Southern constellation Eridanus. Thanks to high-precision follow-up photometry and spectroscopy obtained by the telescopes TRAPPIST and Euler, the mass and size of this planet, WASP-50b, are well constrained to 1.47+-0.09 M_jup and 1.15+-0.05 R_jup, respectively. The transit ephemeris is 2455558.6120 (+-0.0002) + N x 1.955096 (+-0.000005) HJD_UTC. The size of the planet is consistent with basic models of irradiated giant planets. The chromospheric activity (log R'_HK = -4.67) and rotational period (P_rot = 16.3+-0.5 days) of the host star suggest an age of 0.8+-0.4 Gy that is discrepant with a stellar-evolution estimate based on the measured stellar parameters (rho_star = 1.48+-0.10 rho_sun, Teff = 5400+-100 K, [Fe/H]= -0.12+-0.08) which favours an age of 7+-3.5 Gy. This discrepancy could be explained by the tidal and magnetic influence of the planet on the star, in good agreement with the observations that stars hosting hot Jupiters tend to show faster rotation and magnetic activity (Pont 2009; Hartman 2010). We measure a stellar inclination of 84 (-31,+6) deg, disfavouring a high stellar obliquity. Thanks to its large irradiation and the relatively small size of its host star, WASP-50b is a good target for occultation spectrophotometry, making it able to constrain the relationship between hot Jupiters' atmospheric thermal profiles and the chromospheric activity of their host stars proposed by Knutson et al. (2010).Comment: 9 pages, 8 figures. Accepted for publication in Astronomy & Astrophysic

    Lupus-TR-3b: A Low-Mass Transiting Hot Jupiter in the Galactic Plane?

    Full text link
    We present a strong case for a transiting Hot Jupiter planet identified during a single-field transit survey towards the Lupus Galactic plane. The object, Lupus-TR-3b, transits a V=17.4 K1V host star every 3.91405d. Spectroscopy and stellar colors indicate a host star with effective temperature 5000 +/- 150K, with a stellar mass and radius of 0.87 +/- 0.04M_sun and 0.82 +/- 0.05R_sun, respectively. Limb-darkened transit fitting yields a companion radius of 0.89 +/- 0.07R_J and an orbital inclination of 88.3 +1.3/-0.8 deg. Magellan 6.5m MIKE radial velocity measurements reveal a 2.4 sigma K=114 +/- 25m/s sinusoidal variation in phase with the transit ephemeris. The resulting mass is 0.81 +/- 0.18M_J and density 1.4 +/- 0.4g/cm^3. Y-band PANIC image deconvolution reveal a V>=21 red neighbor 0.4'' away which, although highly unlikely, we cannot conclusively rule out as a blended binary with current data. However, blend simulations show that only the most unusual binary system can reproduce our observations. This object is very likely a planet, detected from a highly efficient observational strategy. Lupus-TR-3b constitutes the faintest ground-based detection to date, and one of the lowest mass Hot Jupiters known.Comment: 4 pages, 4 figures, accepted for publication in ApJ

    Spin density distribution in a partially magnetized organic quantum magnet

    Get PDF
    Polarized neutron diffraction experiments on an organic magnetic material reveal a highly skewed distribution of spin density within the magnetic molecular unit. The very large magnitude of the observed effect is due to quantum spin fluctuations. The data are in quantitative agreement with direct diagonalization results for a model spin Hamiltonian, and provide insight on the actual microscopic origin of the relevant exchange interactions.Comment: 5 pages 4 figure
    corecore